Tuesday, May 20, 2008

Applications of Digital Image Processing

Applications of digital image processing in general are infinite. There are hardly any areas where image processing is not necessary. However major applications in medicine, space are discussed briefly:

Medical:
In 1895, Wilhelm Conrad Röntgen discovered that x-rays could pass through substantial amounts of matter. Medicine was revolutionized by the ability to look inside the living human body. Medical x-ray systems spread throughout the world in only a few years. In spite of its obvious success, medical x-ray imaging was limited by four problems until DSP and related techniques came along in the 1970s. First, overlapping structures in the body can hide behind each other. For example, portions of the heart might not be visible behind the ribs. Second, it is not always possible to distinguish between similar tissues. For example, it may be able to separate bone from soft tissue, but not distinguish a tumor from the liver. Third, x-ray images show anatomy, the body's structure, and not physiology, the body's operation. The x-ray image of a living person looks exactly like the x-ray image of a dead one! Fourth, x-ray exposure can cause cancer, requiring it to be used sparingly and only with proper justification.
Space:
Sometimes, we face a situation so as to make the most out of a bad picture. This is frequently the case with images taken from unmanned satellites and space exploration vehicles. DIP can improve the quality of images taken under extremely unfavorable conditions in several ways: brightness and contrast adjustment, edge detection, noise reduction, focus adjustment, motion blur reduction, etc. Images that have spatial distortion, such as encountered when a flat image is taken of a spherical planet, can also be warped into a correct representation. Many individual images can also be combined into a single database, allowing the information to be displayed in unique ways. For example, a video sequence simulating an aerial flight over the surface of a distant planet.

Commercial Imaging Products:The large information content in images is a problem for systems sold in mass quantity to the general public. Commercial systems must be cheap, and this doesn't mesh well with large memories and high data transfer rates. One answer to this dilemma is image compression. Just as with voice signals, images contain a tremendous amount of redundant information, and can be run through algorithms that reduce the number of bits needed to represent them. Television and other moving pictures are especially suitable for compression, since most of the image remain the same from frame-to-frame. Commercial imaging products that take advantage of this technology include: video telephones, computer programs that display moving pictures, and digital television

[get this widget]

0 comments:

search

Google