Nanotechnology is molecular manufacturing or, more simply building things one atom or molecule at a time with programmed nanoscopic robot arms. A nanometer is one billionth of a meter (3 to 4 atoms wide). Utilizing the well-understood chemical properties of atoms and molecules (how they stick together) a nanotechnology proposes the construction of novel molecular devices possessing extraordinary properties. The trick is to manipulate atoms individually and place them exactly where needed to produce the desired structure.
Nanotechnology broadly refers to the manipulation of matter on the atomic and molecular scales i.e. where the objects of interest are 0.1-100 nanometer n size. Atomic diameters represent the lower end of this range at tenths of nanometers. Transistors used in the present generation of microprocessors, with dimensions of the order of 100 nanometers are at the upper end of the nanotechnology range. As atoms come together to form molecules and molecules come together to form clusters or crystals, the inherent macro-scale properties are determined. By controlling molecular structure in material synthesis, mankind has gained unprecedented control over the basic material properties such as conductivity, strength, capacity, ductility and reactivity, yielding innovative applications ranging from batteries to automotive materials. This is a passive nano technique that primarily focuses on tuning the properties of resulting bulk materials. The active nano technique facilitates creation of functional electronic and ultimately mechanical devices at the nano scale.
[get this widget]
0 comments:
Post a Comment